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abstract 

As a consequence, numerous branches of 

simulation technology are warming up to the idea 

of taking uncertainties into account in numerical 

simulation, which is both reasonable and frequently 

necessary for producing trustworthy results. 

However, uncertainties have only been sometimes 

taken into consideration in multibody system 

analysis. Uncertainties are often thought of as being 

of a random character, or aleatory uncertainties, 

which may be effectively managed by using 

probability theory. So-called epistemic 

uncertainties, such as those attributable to a lack of 

knowledge, to subjectivity in numerical 

implementation, and to simplification or 

idealization, actually account for a significant 

portion of the uncertainties built into dy amical 

systems in general, or multibody systems in 

particular. As a result, a suitable theory is needed to 

describe epistemic uncertainty in multibody 

systems, which is still a challenging problem. In 

light of this, an approach will be introduced that 

incorporates epistemic uncertainty into multibody 

system modelling and analysis. Based on fuzzy 

arithmetic, a subfield of fuzzy set theory, this 

strategy uses fuzzy numbers to represent the 

uncertain values of the model's parameters, which 

is a relatively straightforward and realistic 

representation of the fuzzy range of potential 

parameter values. By giving simulation results that 

account for the dynamics of the system as well as 

the impact of the uncertainties, this cutting-edge 

modelling approach allows for the derivation of 

more complete system models that surpass the 

conventional, crisp-parameterized models. 

Introduction 

Knowing the model parameters well is crucial in 

MBS modelling and simulation for producing 

results that are accurate representations of the real 

system's behaviour. The problem is that when 

models grow in complexity and richness, it gets 

harder to pin down their individual parameters. 

There may be considerable ambiguity in the 

indicated parameters, and it will be difficult to offer 

precise values for them. Moreover, assumptions of 

idealization and simplification are necessary to 

create a mathematical description with an 

appropriate number of degrees of freedom, despite 

the aforementioned growing focus on detail in 

modelling. As a result, despite appearances, even 

well-modelled MBS might display its inherent 

uncertainties as a result of modelling flaws, 

inaccurate data, or a lack of complete 

understanding. The lack of knowledge, fuzziness in 

parameter specification, and subjectivity in 

numerical implementation are all examples of the 

types of uncertainty that fall under the umbrella 

term "epistemic uncertainties" [1]. The analogue to 

this system is the term "aleatory uncertainty," 

which refers to the randomness or variation that 

occurs in nature. Probability theory, and in practice, 

often Monte Carlo techniques or polynomial chaos 

methods, are used to tackle aleatory uncertainty 

with success. When contrasted with this, extended 

modelling with epistemic uncertainty remains 

challenging from both a methodological and 

computational perspective. The notion of fuzzy set 

theory [2] has been gaining popularity in recent 

years as a method to describe epistemic difficulties. 

In this paper, we provide a novel interdisciplinary 

approach to system modelling and analysis that 

incorporates uncertainties, especially epistemic 

ones, from the outset of the modelling process. This 

strategy relies on a subfield of fuzzy set theory 

called fuzzy arithmetic, which has seen increased 

use with the development of the Transformation 

Method [3]. 

Uncertainty Classification 

Even though there is a vast variety of uncertainty 

manifestations, the above classification into 

aleatory uncertainties and epistemic uncertainties is 

generally accepted and useful [1]. This 

classification is utilized throughout, despite the fact 

that alternative categories (such [4]) may be used in 

a nearly equivalent fashion. The following 

descriptions will elaborate on the various ideas and 

the scopes of their application. 

Risks of the Aleatory Variety 
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The time and space scattering of a system's 

physical attributes is an example of an aleatory 

uncertainty. They are haphazard and have to do 

with the unknown results of an event or an 

experiment. In this context, the use of random 

numbers with probability density functions 

obtained from measurements and experimental data 

might produce an effective representation of 

aleatoryrial uncertainties. Probability theory, Monte 

Carlo simulations, and polynomial chaos 

approaches are generally recognised in the 

literature (e.g. [5], [6]) as the most effective, 

adaptable, and often used methods for quantifying 

the propagation of the aleatory uncertainty across 

systems. 

Doubts About Our Ability to Know 

Lack of information, or epistemic uncertainty, may 

lead to problems like imprecise parameter 

specification, arbitrary numerical implementation, 

or oversimplification and idealization throughout 

the system modelling process, among other things. 

Probability theory may not be suitable for 

accurately representing epistemic uncertainty [7] 

due to the substantial and undeniably distinct 

nature of epistemic uncertainties compared to 

aleatory uncertainties. On top of that, real-world 

data for a randomness-based measurement of the 

uncertainties are often unavailable. For these 

reasons, this study instead adopts the approach of 

characterizing epistemic uncertainties using fuzzy 

numbers [2, 8], and employs fuzzy arithmetic [8, 9] 

to evaluate the model with fuzzy-valued parameters 

and therefore propagate the uncertainty throughout 

the system. If just worst-case boundaries and no 

other information about a potential distribution 

inside the interval is provided, then representing 

epistemic uncertainty by ordinary intervals seems 

to be the most practical and easy option. While the 

dependency problem (also known as the 

overestimation effect [9, 3]) makes it difficult to 

use classical interval arithmetic in the evaluation of 

models with interval-valued parameters, the sharp 

boundedness of the intervals acts quite counter to 

the prevailing human perception of quantifying 

imprecision. Instead, the ambiguous limits of fuzzy 

numbers are a better fit with this perspective. 

Furthermore, the question of how the results of the 

propagation will change (both qualitatively and 

quantitatively) with the amount of initial 

uncertainty, i.e., with the lengths of the intervals 

assumed, is automatically raised when uncertainty 

is propagated based on a single set of intervals for 

the uncertain parameters. This constraint is easily 

overcome by using fuzzy numbers, which may be 

seen as a series of nested intervals spanning from a 

worst-case scenario in the presence of maximal 

uncertainty to a crisp nominal value in the presence 

of total confidence (see Section 3). 

Theory with some uncertainty as 

already said 

Previously, we saw that fuzzy set theory works 

effectively for capturing epistemic ambiguities. 

Following this conceptual groundwork, we 

introduce how fuzzy arithmetic may be used for the 

numerical analysis of dynamical models. 

Misleading Figures The numerical implementation 

of uncertain model parameters as fuzzy numbers 

[8] is a specific application of the theory of fuzzy 

sets that is somewhat distinct from the well-

established usage of fuzzy set theory in fuzzy 

control. Fuzzy numbers may be thought of as 

convex fuzzy sets over the universal set R, with 

membership functions (x) [0, 1], where (x) = 1 

holds true only for the single value x = x R, the so-

called center value or nominal value. Here's an 

illustration: the triangular (linear) fuzzy number 

[9], written in the shortened form [9]. 

 

is defined by the membership function 

 

However, if it's necessary to put a number on the 

uncertainty around a particular model parameter, a 

membership function with a different form may be 

used. Fuzzy arithmetic, the computation using 

fuzzy numbers, is a non-trivial issue, particularly 

when used to the assessment of complex 

mathematical models with fuzzy-valued operands. 

Please refer to Liu [10, 11] for a thorough 

exposition of the mathematical foundations of 

fuzzy variables within the context of credibility 

theory. 

System Dynamics in a Multi-Body 

Environment 

The multibody technique is often employed for the 

modelling of coupled rigid bodies that carry out 

substantial operating movements. Since MBS 



Journal of Contemporary Issues in Business and Government Vol. 25, No. 01, 2019  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2019.25.01.032 
 

International Conference on Trending Application in Science and Technology 
 

351 
 

formulations may be used to such a broad variety 

of engineering issues, their study is a lively area of 

inquiry [26]. As a result of solving the Newton-

Euler equations, we get the differential-algebraic 

equations of second order that describe the motion 

of the system (DAE). By replacing the reaction 

forces that relate the ODE with the algebraic 

equations with generalized coordinates y, we may 

reduce these nonlinear equations to a minimum 

form representation, i.e., a set of ordinary 

differential equations. Initial conditions on location 

and velocity, y0 and y 0, and the equations of 

motion themselves may both be affected by the 

parameter dependence in the most generic 

situation. The parametric system may be expressed 

in its simplest form as follows. 

 

Minimum mass matrix denoted by M, generalized 

centrifugal, Coriolis, and gyroscopic forces denoted 

by k, and generalized applied forces denoted by q. 

The ep parameter vector stores all the fuzzy 

parameters together. The formation of the motion 

equations may be performed by several approaches, 

including the use of absolute or relative kinematics, 

as well as numerical or symbolic formulations. A 

number of evaluations of Equation 3 for the system 

in various perturbed states, i.e., different locations 

in the parameter space, are needed as part of the 

solution technique for obtaining the fuzzy valued 

output. A symbolic formulation is useful for 

assessing parametric uncertainties since the 

equations of motion need to be established once. 

[27] Neweul-M2 is a tool for MBS simulations that 

uses symbols. 

Model Order and Elasticity in the MBS 

Elasticity Reduction 

If the bodies undergo non-trivial elastic 

deformations, then the large working motion must 

be calculated to account for the effect of the 

deformation. Nonlinear finite element methods may 

do this by include parameters for slope and rotation 

in addition to the ansatz functions representing the 

deformation field. This method is used, for 

example, in the big rotation vector formulation [28, 

29] and the absolute nodal coordinate formulation 

[27, 28]. The floating frame of reference method 

offers an alternative and, in general, more 

economical method for emulation if the deflections 

fall within the range of linear elasticity. In this 

case, we employ the concept of reference frames to 

represent the massive mobility of the workers. The 

deformation is subsequently taken into account in 

the local coordinate system of the reference frame, 

and the elastic bodies are coupled to the frame. A 

point's location on an elastic body may be broken 

down into the reference position, the location of the 

point in the reference frame, and the deflection. It 

is still possible to write the system equations in the 

general form of Equation 3, but with the inclusion 

of the elastic coordinates at y. 

Several software packages exist to simulate elastic 

bodies using the finite element method, which may 

be used for a broad variety of tasks. While the 

resulting system dimension is often too large to be 

computed within the elastic MBS framework, the 

dynamic behaviour of the system in the frequency 

range of interest may be represented by a relatively 

compact system that is attainable via model 

reduction. Modern reduceton approaches based on 

balanced truncation or moment matching have 

acquired substantial popularity in recent years [30], 

in addition to the older modal reduction techniques 

such as component modes synthesis. If the 

quantities linked to rigid bodies or joints are all that 

need to be considered for the propagation of 

uncertainty, then the same methods may be used as 

previously. Therefore, in this scenario, the addition 

of leas tic bodies does not increase the difficulty of 

quantifying uncertainty. 

Propagation of uncertainty may be managed in the 

same way as stated above if they are confined to 

values associated with rigid bodies or joints. 

Accordingly, the addition of leas tic bodies does 

not add complexity to the measurement of 

uncertainty in this instance. However, the situation 

becomes more complicated if unknown factors are 

linked to individual building components. It is 

feasible to solve this problem by computing an 

elastic MBS for each point in the parameter space, 

which entails establishing the system matrices of 

the FE model, performing a model reduction, and 

then deriving the equations of motion of the newly 

constructed elastic MBS. Obviously, this method is 

too time-consuming to be useful for complicated 

systems. Model reduction that takes into 

consideration the parametric dependence and 

retains it in the final reduced model is more 

effective but more methodologically challenging. 

This is a newly popularized area of study called as 

parametric model order reduction (pMOS). Most 

pMOR methods, at their core, interpolate between 

numerous reduced-order models to arrive at a 

representation of the full-order model. As a result, 

the parameter dependence is preserved in the 

simplified model, and it is once again possible to 
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operate inside a symbolic framework without 

resorting to a recalculation of the elastic MBS 

equations. 

MBS Uncertainties Apart 

In addition to the well-studied aleatory 

uncertainties, such as the fluctuation of material 

characteristics and geometrical parameters owing 

to abnormalities in manufactureIng or assembly, 

the epistemic uncertainties play a significant role in 

MBS modelling. These doubts in knowledge may 

be broken down further into the following classes 

according to their source and nature: Having a wide 

range of unknown or poorly defined operating 

circumstances (including beginning conditions, 

applied loads, friction model parameters, etc.) 

Implementation subjectivity includes, but is not 

limited to, the use of varying integration schemes, 

time steps, model order reduction methods, the 

number of reduced basis vectors, and other 

numerical evaluation techniques. • Inadequacies in 

the models themselves, such as the idealization or 

simplification of models to assure or expedite the 

numerical assessment, or the use of idealized or 

simplified constitutive laws for material models (as 

is done for composite materials, friction behaviour, 

etc.). The modelling process of MBS is susceptible 

to epistemic uncertainties of all three types. 

However, in the context of comprehensive 

modelling—that is, modelling both the system and 

possible uncertainties—these uncertainties can be 

successfully represented and quantified by fuzzy 

numbers, and the propagation of the uncertainties 

through the model can be evaluated with the help 

of the Transformation Method of fuzzy arithmetic. 

Example 

The following case study will show how to model 

and analyse an MBS thoroughly by taking into 

account uncertainties expressed as fuzzy-valued 

parameters. A planar two-link manipulator with 

motors at both joints makes up the system. Figure 2 

shows a drawing of the proposed model. As shown, 

the angles 1 and 2 are each one degree of freedom, 

and the torques T1 and T2 are applied by motors at 

the joints. The linkages also have viscous and 

friction damping, implemented using the Strobeck 

friction model. Joint i's damping moment, I am 

calculated as 

 

 

Fig.1a representation of a two-link manipulator 

model 

involving the viscous damping coefficient d, the 

Coulomb friction damping moment C, which is 

proportional to the friction coefficient C, and the 

static friction damping moment s, which is 

proportional to the stiction coefficient s. The ratio 

of the static friction value to the Coulomb friction 

value decreases exponentially with increasing 

rotational velocity, and this ratio is affected by a 

scaling factor termed the Strobeck velocity, or vs. 

The second arm has a weighted end effector at its 

tip, designed to be propelled in a predetermined 

direction. To achieve this goal, a feedforward 

control was determined using the nominal model, 

with the aim of having the actuated joints move the 

end effector to the appropriate location. xref = h 

x(t)ref, y(t)refit is the end effector's time-dependent 

position vector, which represents the reference 

trajectory.  

The driven trajectory will only depart from the 

planned trajectory by a tiny amount if the model 

parameters are known to within a high degree of 

accuracy. Now we must take into account the 

uncertainty around the model's inputs. In particular, 

m, the mass of the end effector, is not known with 

any degree of accuracy. This may be because of the 

fact that a variety of tool tips may be attached to 

the end effector (lack of knowledge). Further, 

Equation 4 describes a refined, but still simple, 

model of friction damping. This might be thought 

of as a degree of doubt stemming from imperfect 

modelling, which may stem, in part, from a lack of 

information about the relevant parameters. In 

Section 3.1, Equation 2 defines triangular fuzzy 

numbers as a means of characterizing the unknown 

parameters, and this is the form used to represent 

the parameters in this section (pie = tfn (xi, l, i, r, 

i)). Table 1 displays the nominal values xi and the 

worst-case deviations lei and r, i. 

 table. 1 we define several fuzzy parameters. 
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At some point, when these unknowns are included 

into the analysis, the manipulator will no longer be 

able to precisely retrace the route for all possible 

configurations, and instead will deviate 

significantly from the original path. In order to put 

a number on this impact, we run a simulation of the 

system using the Transformation Method. Figure 3 

depicts the resultant fuzzy-valued trajectory, in 

which the end-motion effector's is shown in the x 

and y directions and the membership value of 

solutions is represented by colouring. To find the 

solution of the nominal system that most closely 

matches the supplied trajectory, look for the black 

curve within the collection of solutions. 

 

Figure 2: A fuzzy answer regarding how the 

feedforward system's end-effector should move. 

Nominal system solutions are shown in black, and 

their membership values are shown on a contour 

plot. Membership values are shown in the color 

scale to the right. 

 

Figure 1: Open-loop (left) and closed-loop (right) 

system error (top) and influence (bottom) estimates 

for end-effector motion in the y-axis (right). (Take 

into account the varying degrees of magnitude.) 

Applying a control, such a PD-control, may help 

mitigate the effects of fluctuations in input data due 

to the uncertainty in the model's parameters. 

 

where ref, i = ref, i(x(t)ref, y(t)ref) and ref, i = ref, 

i(x(t)ref, y(t)ref, x (t)ref, y (t)ref) are the reference 

angles and angular velocities, respectively, that 

follow from the construction of the reference 

trajectory. Torques are employed directly as control 

outputs without any consideration of motor 

dynamics. As shown in Figure 4, both the open-

loop (left) and closed-loop system's y-motion end 

effector errors (top) and influence measurements I 

(bottom) are displayed (right). Both the inaccuracy 

and the absolute effect are drastically decreased by 

the controller, as seen in the figures. Since the 

friction moments have an impact on the driving 

torques directly, they are efficiently compensated 

by the PD-control, making the combined effects of 

damping and friction insignificant in the closed-

loop situation. The oscillatory behaviour makes it 

clear that the bulk of the residual output uncertainty 

is caused by inertial effects, while mass variation 

also plays a role. For lower membership levels, the 

error limits of the closed-loop system slowly 

expand, indicating unstable behaviour; 

nevertheless, for % 3 4 at least, the error remains 

limited. 

 This means the controller has a relatively limited 

resilience zone relative to model uncertainty. 
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(Remember, we haven't factored in disturbances 

yet.) If you want, you can easily determine the 

threshold value of the membership level for which 

stability is guaranteed, and thus obtain explicit 

margins of robustness, i.e., the maximum tolerable 

deviation of each model parameter from its 

nominal value. Parameters that are critical to the 

system's resilience may be recognized and should 

be identified as precisely as possible with the help 

of the supplemental information supplied by the 

influence measurements. The time intervals or 

frequency ranges in which an identification of a 

model parameter may be achieved more reliably are 

clearly assignable, since the impact measurements 

can be computed with regard to time, frequency, or 

any other independent variable. This paves the way 

for ignoring measurement data in cases when there 

is insufficient information for an identification. 

When using the two-arm manipulator's output as an 

example, it is not possible to accurately determine 

the value of the viscous damping factor d; 

nevertheless, the stiction coefficient s exhibits 

significant effect across the whole time period and 

may be accurately recognized. 

Conclusion 

Modelling, solving, and analysing issues in 

multibody dynamics while taking into account 

uncertainties has been shown to benefit greatly 

from the use of fuzzy arithmetic based on the 

Transformation Method. By doing so, the 

robustness against uncertainties of various designs, 

including the robustness assessments of applicable 

controllers, may be compared and contrasted. It is 

also possible to quantify the impact of each 

unknown parameter separately. The 

Transformation Method is an adaptable, 

generalized process that may be used for a broad 

variety of issues with just modest modifications. 

Although there are unique challenges involved in 

resolving fuzzy-parameterized multi-body systems, 

some of which have been touched on above, there 

are still others that need to be addressed. The 

increasing computing effort is one of the limiting 

aspects of calculations considering uncertainty in 

complex systems.  

The amount of work required is directly related to 

the number of unknown parameters, since the 

computational complexity of most existing 

computational techniques rises exponentially with 

the dimension of the parameter space. For example, 

if you want to sample the edges of a hypercube, 

you'll need twice as many points in each 

dimension. That's why it's called "the curse of 

dimensionality," or the negative effects of having 

more space than you need. Therefore, it is of 

paramount importance to find ways to speed up the 

computations itself, such as by decreasing the 

number of required model assessments. Further 

research on pMOR techniques is also necessary for 

the effective computation of systems with 

uncertainty in elastic bodies. 
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